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ABSTRACT

The irradiation by infrared laser light of an atom adsorbed on the surface

of a harmonic crystal is considered. The dynamic coupling between the atom (its

motion) and the substrate degrees of freedom (phonon field) in the presence of a

confining potential well (van der Waals bond between atom and crystal) gives

rise to thermal relaxation of this adbond configuration. Both the atom and the

substrate are assumed to be transparent, but the bond is allowed to have non-

vanishing dipole-moment matrix elements, which couple the external field to the

adsorbate. The equation of motion for the reduced adbond density operator is

obtained with reservoir theory, and the relaxation constants are expressed in

properties of the crystal. With a similar method, the spectral profile for

absorption of weak radiation is derived. Subsequently, the illumination by a

strong finite-linewidth laser field which is in close resonance with a single

transition of the adbond is examined. The optical Bloch equations in operator

form are derived and applied to study the process of laser heating of the

crystal. It is pointed out how this mechanism can be understood as resulting

from (multi)photon-phonon conversion reactions which are mediated by the adbond.



I. INTRODUCTION

Applications of tunable laser sources in contemporary experiments in

physics and chemistry ca. roughly be subdivided into two categories. In the

first class the laser is used as a diagnostic tool to investigate a dynamical

system with spectroscopic methods. Scanning the :-requency of a low-power field

which is incident on an atom or molecule reveals the resonances of the system as

lines in the absorption profile. Interaction of the system with the environment

(collisions, spontaneous emission, presence of boundaries, etc.) amounts to

relaxation of the molecule, which in turn broadens a spectral line in such a way

that the width of the line is proportional to the inverse relaxation rate of the

specific transition. More subtle properties of the line shape, such as the far-

wing decay, carry information on the details of the interaction, since the

frequency dependence of the absorption is determined by the Fourier-Laplace
1

transform of the time-evolution operator of the density operator. Therefore,

it can be expected that a profound comprehension of dynamical properties can be

achieved from an accurate observation of spectral profiles. However, this

method requires an elaborate theory which disentangles the contributions of the

various mechanisms to the line shape.

In the second category of experiments, a radiation field is applied in

order to modify or even induce a process. An incident photon can supply the

necessary activation energy for a reaction which is very unlikely to take place

without a field. The advantage of a narrow-band laser is that by tuning the

laser frequency, the process can be optimized, in contrast to, for instance,

thermal excitation of a species (collisions). Prime examples are laser-induced

dissociation and ionization and atomic resonance fluorescence. In more rigorous

situations, a strong (pulsed) laser is merely used as a heat gun (melting,
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* vaporization), and the color and polarization of the field are not of crucial

importance. 
2

In the present paper we consider optical features of atoms which are

-" adsorbed on a crystal. An atom is bounded to the substrate by electromagnetic

interaction with the crystal atoms (van der Waals energy), which is effectively

described by a potential well. The few (-25) vibrational adbond states have

transition frequencies (level separations) of the order of 50 cm-1 up to 500

*cm -1, which is in the infrared (IR) region of the optical spectrum. Both the

atom and the crystal are supposed to be transparent for IR light, as is for

instance the case for noble-gas atoms on potassium chloride. The vibrational

states, however, exhibit an optical activity in the sense that there are non-

vanishing dipole matrix elements between the various bound states. IrradiationI with an IR laser will then amount to photon absorption by the bond, and hence

the spectral profile will reflect the properties of the binding potential and

tedynamical interaction with the substrate. In this fashion we can study

transparent crystals with spectroscopic methods, where the medium for transport

of the information is furnished by the adsorbed atoms. This situation is

reminiscent of the more familiar problem of collisional redistribution by

neutrals in gas-phase experiments. Transparent atoms are imersed in a buffer

gas, and photons from an incident field are absorbed during collisions only.

Accurate measurements of line shapes then allow the determination of interaction

potentials. The only distinction is that collisional redistribution deals with

scattering states, whereas the spectroscopy of adsorbates involves bound states.

It can be anticipated that the established methods for the gas phase can be

converted into suitable surface equivalents, although experiments along this

line are still rare. 3 ,4



Efforts in the second category of the application of lasers in this system

are far more common, and most notably studied is the process of resonant

desorption. 57An intense IR laser is tuned into resonance with the transition

frequency between a low-lying and a high-lying vibrational state. Absorption of

a photon is accompanied by a transition of the adbond to the high-lying state,

which is close to the continuum. Then the crystal, regarded as a thermal bath,

has only to provide a small amount of energy in order to accomplish the

desorption of the atom. Without the driving laser this process would not occur,

since the atomic bond has to be excited to the high-lying state by thermal

coupling to the substrate. In this way, one has expected to be able to make

clean surfaces, without heating (as in thermal desorption) or damaging the

matrias. -13Another idea has been that advantage could be taken of the

resonant nature of the process. Different adsorbed species would be desorbed

selectively, depending on the laser frequency, which would provide a practical

method for isotope separation, or less ambitious, separation of molecules. 12-13

Although the sketched process will obviously happen if the radiative coupling is

suf ficiently strong, it does not necessarily mean that the efficiency is very

8high. Recent experiments show a quantum yield of about 1% (ratio of desorbed

atoms to absorbed photons), which conversely implies that almost all radiation

is converted into thermal energy of the substrate. Consequently, the solid

heats up very fast, and this is precisely what one tries to avoid. Since the

thermal coupling is inevitable, the conclusion is that resonant desorption is

not a very promising technique. Furthermore, the selectivity has turned out to

be very poor, if present at all, which is probably due to a rapid energy

exchange between different adsorbates preceeding the desorption. 14From a

different point of view, however, this mechanism could be applied for laser

heating of a transparent crystal. By manipulating the spatial variations of the

Af ...
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laser intensity, this process can be used to maintain well-controlled

temperature gradients along a gas-solid interface.

II. KINETIC PHONON COUPLING

An atom with mass m is physisorbed on the surface (xy-plane) of a crystal,

and its motion is assumed to be mainly perpendicular to the surface (z-

direction). The interaction potential with the solid is subdivided into two

parts, V1 and V23 where V1 represents the potential well resulting from the

coupling to the closest surface atom, and V2 is an effective repulsive

potential, which is brought about by the remainder of the crystal and confines

the atom to the region z > 0. The thermal-equilibrium position of the nearest

V. surface atom, with mass M, is taken as the origin of the coordinate system.

Then the positions of m and M are denoted by ze and u, respectively, and V1

depends on Ize ul only, whereas V2 depends on z. Subsequently, it can be

* asserted that u (- 0.1 A) is much smaller than z (> 1 A), which allows a Taylor

expansion of V1 around u = 0. Hence we can write

dV 1
Vl(Ize - U) =  V(Z) d-'"T "' (2.1)

and then omit the ellipsis. In physical terms this means that we neglect

multiphonon processes in comparison with single-phonon transitions, as will

become clear in due course.

Next we notice that the expansion (2.1) separates the covrling with the

lattice vibrations (last term) from the interaction V (Z) with the static

crystal, which equals the interaction for u = 0. A convenient basis set for the

adbond wave function is therefore provided by the eigenstates of the adbond

Hamiltonian Ha, defined as

% %



2 2
a 2m + V (Z) + V2 (z) (2.2)
a 2m dz2

where the first term is the kinetic energy. Once a potential is prescribed, the

eigenvalues )w . and the eigenfunctions 1i> of the H can be evaluated withx a

standard methods. A common choice for the combination V (Z) + V2(z)is a Horse

potential15-19 or a truncated harmonic potential.20 We shall not refer to a

specific potential in this paper, but only use the eigenvalue equation

Hali> = Aw 1i> (2.3)

and assume the eigenstates to be non-degenerate (as for a Morse potential).

Then in turn we can represent H a with respect to its own eigenstates as

Ha  w.P. (2.4)
Li i

with P. = li><il the projector on the i-th adbond state.

As a model for the crystal we adopt a harmonic-lattice representation, for

which the Hamiltonian reads
2 1

H = w(k)saks (2.5)
ks

in terms of the annihilation and creation operators for phonons (bosons) in the

mode ks. The summation runs over the wave vectors k and branches s which are

supported by the crystal, and the dispersion relation w = w(k) is taken to be

independent of s and of the direction of k. Coupling between the phonon field

and the adbond is brought about by the position operator u of M, which equals

the displacement field at the origin. Explicitly,

u'v{ (ak + )e (2.6)-L 2MVw(k)- ak
ks
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in terms of the volume v of a unit cell and the quantization volume V.

Combining everything then gives for the Hamiltonian of the adbond plus crystal

H - H + H - RS (2.7)a p

with the abbreviations

R -u'ez , S - dVI/dz (2.8)

It will appear in the next section that it is advantageous to work with a

density-operator formalism, so the equation of motion is

idt = [H,p] p* - p , Trp - 1 . (2.9)

Fre Eq. (2.6) we see that the interaction between adbond and crystal, -RS, is

linear in the creation and annihilation operators, which implies that -RS can

only induce transitions between crystal states which differ by not more than one

phonon. In other words, by retaining only the linear term in the expansion

(2.1), we discard multiphonon processes, which can be justified as long as any

set of two adbond states is resonantly coupled by a single-phonon process.

Physically this implies that any level separation 1Wi - W I must be smaller than

the cut-off frequency of the dispersion relation, which is the Debye frequency

III. THERMAL RELAXATION

The full density operator p(t) of a single atom and a large crystal has not

much significance. Since we are interested in the dynamics of the adbond, we

consider the reduced density operator po(t), defined as

PO(t) - Tr pP(t) (3.1)

.......
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where the trace runs over all phonon states. On the other hand, the crystal is

regarded as a large reservoir at temperature T, for which the density matrix

equals

p= exp(-H p)[Tr pexp(-OH p)-1 (3.2)

with A - (kT) -1 . Coupling between the adbond and the heat bath then gives rise

to the thermal relaxation of pa(t), and eventually po(t) reaches a steady state

I~j" o =  l im P (t ) (3 .3 )

0 0

in which the atomic bond and the crystal are in thermal equilibrium.

It is a standard procedure in relaxation theory to derive an equation for

the reduced density operator po(t). Both projection techniques 22 and a

23,24reservoir approach yield the same result, provided that equivalent

approximations are made.25 Here we will briefly summarize the derivation of

Ref. 24 and adopt a Liouville-operator notation, which will allow a concise

formulation. A Liouvillian L is related to a Hamiltonian H according to

L IH,p] (3.4)

which defines the action of L on an arbitrary operator p in Hilbert space. Then

one regards p as a vector in Liouville space and L as a linear operator in that
26 2 .

space. Consequently, an N-dimensional Hilbert space generates an N -

dimensional Liouville space. Matrix representations of Liouvillians can be

4constructed in the very same way as for operators in Hilbert space. A theorem

that follows immediately from Eq. (3.4) is

. exp(Ls)p = exp(Hs/A)pexp(-Hs/A) (3.5)

where, for instance, s - it.

05
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Reservoir theory starts with a transformation of the equation of motion

(2.9) to the interaction picture, where the coupling -RS is considered as the

interaction. With

p(t) = exp[i(La + L p)t]p(t) (3.6)

Eq. (2.9) can be written as

d

where W(t) is defined as the Liouvillian

W(t)p - [(exp(i(La + L )t)(RS)),p] (3.8)

for an arbitrary p. As the initial condition we choose

p(0) - o(0) .p (3.9)

Then the identity

Tr p(W(t)p(O)) - 0 (3.10)

follows from the fact that p commutes with Hp, and from the explicit form of R,

Eqs. (2.6) and (2.8), which gives TrpR-p Mf 0. If we now integrate Eq. (3.7),

take the trace over the phonon states, and use Eq. (3.10), we find

d f2  Wft)W(t-)(t-r) (3.11)dt Po(t) ""2Trp0

which is an exact integral of the equation of motion.

Obviously, the integral in Eq. (3.11) is awkward, and a series of

approximations has to be made in order to obtain a manageable expression. The

crucial step which has to be made is the factorization

- (3.12)

-SP
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in the integrand of Eq. (3.11). Then we substitute the explicit form of W(t),

use Eq. (3.5) several times, and transform back to the Schrdinger picture with

the inverse relation of Eq. (3.6). Finally we obtain

S(t) - exp(iLa )Lc(T)Po(t-) (3.13)dtPo~t = LaPo~t - 2i LS  ~t~

where L and L (T) are defined by

iC

L sP - IS,p]

L (T)p = G(T)Sp - G(T)pS (3.14)

c

which involves the reservoir correlation function

G(T) = 2%A2 Trp Rp exp(iL p)R (3.15)

Inspection of Eq. (3.13) shows that the coupling to the crystal only enters

through the function G(T). Approximation (3.12) is sufficient to separate

reservoir and adbond operators, and the presence of the solid can be accounted

for by a single function G(T).

Of paramount importance for the validity of a reservoir approach is that

G(-) decays to zero (for T-) sufficiently quickly. Due to the interference

between the many phonon modes, the typical decay time will be of the order of

the inverse cut-off frequency of the spectrum, which is wD for a crystal. This

will become more clear in the next section. Then Lc () deviates from zero only

for - -0 , and the most crude approximation would be to replace it by an

operator which is proportional to a delta function. It is easy, however, to do

much better. The net effect of the coupling of the adbond to the crystal is a

dar-ping on a time scale which equals the inverse linewidth. Since this is very
-1

slow in comparison with D, we conclude that in the interaction picture, p(t- )
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varies negligibly on a time scale D, and therefore we can replace p(t-T) by

0(t) in Eq. (3.11). This is the Markov approximation, and the equivalent in

the Schrbdinger picture reads

P (t-T) Z exp(iLa')Po(t) (3.16)

which can be inserted into Eq. (3.13). Then we can replace the upper

integration limit by infinity, which yields for the equation of motion

d !Lop(t) - (La - ir)po(t) .(3.17)

Relaxation of the adbond due to the coupling to the phonon reservoir is now

cocpletely accounted for by the time-independent Liouvillian

r = 1L fd exp(-iLaZ )Lc()exp(iL T) (3.18)

An expansion of r in matrix elements with respect to adbond states will be given

in Section V.

If we insert the expression for LS and L c(T) in Eq. (3.18), and use

relation (3.5) for the exponentials, then we find that r can alternatively be

cast in the form

rp - LS(Qp - pQ ) (3.19)

where the Hilbert-space operator Q is defined as

Q d fd G(T)exp(-iLa )S " (3.20)

The advantage is that Q only involves a single exponential. Furthermore, we

directly find from the representation (3.19)

Tr a(rp) - 0 , (rp) - rpt (3.21)
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which guarantees the conservation of trace and Hermiticity in the time evolution

of 0o(t).

IV. RESERVOIR CORRELATION FUNCTION

Properties of the crystal which affect the time evolution of the adbond are

all embodied in the correlation function G(r). In order to illustrate

quantitatively the behavior of G( ), we adopt a simple Debye model, which will

already reveal the most salient features of a crystal correlation function. In

this model, the dispersion relation is taken to be

w(k) - ckH(Tv-ck) (4.1)

with c the speed of sound and H the unit-step function. The expression (3.15)

is easily evaluated with standard techniques. 23 It is elucidating to subdivide

G(:) in a spontaneous and a stimulated part, according to

G(T) = G(T)sp + G()st (4.2)

where G(r)sp is by definition G(r) for T - 0. Hence G(r)sp is independent of T

and accounts for relaxation of the adbond due to the presence of the crystal,

irrespective of its temperature. We find for this spontaneous part

-1 ( + iwD )exp(-ipr) - 12 (4.3)G(- )sp . w2

with the parameter C given by

C - 3ff/AM . (4.4)

The real and imaginary part of G(T )sp are plotted in Fig. 1. For the stimulated

contribution we obtain
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G()st 0 2 wD 3 fn dw n(w)wcos(w ) (4.5)

which is plotted in Fig. 2 for two values of the temperature. Here n(w) is the

average number of phonons in mode w, which is explicitly

n(w) - [exp(OW) - 11-1 . (4.6)

Figs. 1 and 2 illustrate that G(T) tends to zero indeed on a time scale D ,

although the decay is not exponential.

From Eq. (3.20) it follows that the relaxation constants (matrix elements

of 7) are determined by the Fourier-Laplace transform of G(x)

CM M f dT exp(iwr)G(T) (4.7)
9 J0

with w equal to a transition frequency wi - w.. From Eqs. (4.3) and (4.5) we

readily derive

(W)sp . D-3 A (wD-w) - ir'lCD- 3 (wD + wlogIl-_wDjI) (4.8)

wt jIw- 3 n(IwI)H(wD IwI)
" XCwD-3 fa 2ww'(4)

il 3p dw' n(w') (4.9)

where P stands for principal value. These functions are plotted in Figs. 3 and

4. For negative values of w the real part o C(w)sp vanishes identically, which

implies that this contribution to r represents a decaying part. The thermal

part obeys the relation

C( t - C()* (4.10)
st st
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which indicates that upward and downward transitions between two levels, due to

the finite temperature of the crystal, have the same rate constant. Hence the

genuine thermal-equilibrium distribution is brought about by the spontaneous

part of the relaxation operator, which is temperature independent.

Setting w equal to zero yields immediately

FOdG(T) - D'2(-1 + vkT/%w D ) (4.11)

which can be regarded as a measure of the strength of G(T). For kT>)wD the

stimulated transitions tend to dominate the spontaneous decay.

V. MATRIX ELMENTS

Solving the equation of motion (3.17) for a particular configuration of

adbond states requires an expansion in matrix elements. Taking the k,.-th

matrix element gives

d_(kjPo(010 > - .i<kl(LaPo(t))l > - <kl(rPo(t))It> (5.1)
dt o a -

It remains to express the right-hand side in matrix elements of p0(t). From the

definition (3.4) of L and the expression (2.4) of Ha, we easily find for the

first term

<kt(La P)It> - akt<kIPIt> (5.2)

for an arbitrary p, where

Akt = k - t (5.3)

is the level separation between the adbond states Ik> and It>.

Slightly more complicated is the evaluation of the relaxation operator r.

First we notice that the exponential in Eq. (3.20) can be expanded as

,- W
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exp(-iLa )P a O exp(-i&kt)Pk Pt (5.4)

kE

which yields the representation for Q

; Q a i (A k)PkSP (5.5)

'2 E Lkt

in terms of the Fourier-Laplace transform of the correlation function. Then we

insert Eq. (5.5) into Eq. (3.19) and use the closure relation

P Pi M 1 (5.6)
i

which finally gives

<kl(rp)lt> - ) (ck <nlpl > + (klln>)

* mn
- I ~ (ck + c n)<mlpln> (5.7)

in terms of the parameters

Cktmn = <kISjt><mSjn >'C(A ) . (5.8)

Equation (5.7) expresses the relaxation operator r in matrix elements of the

derivative of the potential, S - dV1/dz, and C(w), evaluated at the frequencies

a "The combination of Eqs. (5.1), (5.2) and (5.7) turns the equation of

motion into a simple set of linear first-order differential equations, which can

be solved directly once a potential and an initial state p0(0) are specified.

VI. ABSORPTION SPECTRUM

A density operator is not directly amenable to observation in an

experiment. One way of measuring properties of an adsorbed atom is by probing
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the system with a weak monochromatic laser. A field with intensity IL (energy

per unit of time that passes through a unit area, perpendicular to the direction

of propagation) and polarization cL is scanned over the resonances of the

system, and the power absorption I(wL) (absorbed energy per unit of time) is

measured as a function of the laser frequency wL. Photons are absorbed from the

field by the joint system of atom, crystal and their interaction (although the

atom and the crystal separately are both assumed to be transparent), so that the

absorption profile exhibits the details of the coupling between the adbond and

the phonon field, rather than the properties of the adsorbed atom (the

potential) alone.

The interaction between the adsorbate and the radiation field is

established by a dipole coupling. Since the motion of the atom is restricted to

the z-direction, the dipole-moment operator p can be written as e z, with p an

operator in the Hilbert space spanned by the eigenstates jk> of the adbond

Ramiltonian H . With E the electric component of the radiation field, we can
,.a -

include the interaction in the equation of motion (2.9) with the substitution

H - H - e 'E (6.1)

The probe beam is considered to be very weak, so that we can compute the power

absorption with the Golden Rule. From the Appendix of Ref. 1 we copy the formal

result

-1 2 (6.2)I(wL) - LwLEOC' 'zz:L' Re - 'OdTex''LTT

where c' is the speed of light and p is the thermal-equilibrium density operator

of the entire system, but without the interaction -p'E. The r-dependence of
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l(:) is given by p(r) - exp(iL)p. We remark that the commutator gives rise to

two terms, where p(T)p (PP(T)) represents stimulated photon absorption

(enission). The net absorption is the balance between the loss and gain term

for photons in the laser mode.

Evaluation of expression (6.2) starts with the identity

Tr [V(T),V] - Trpexp(-iLT)[i,-1 . (6.3)

Then we introduce the quantity

D(r) = exp(-iL)[-,P] (6.4)

which is an operator in the entire phonon and adbond Hilbert space. With D (r)

Tr r D(T), the adbond part of D(T), we can write Eq. (6.3) asp

Tr [p(T),p] = Tr apD 0() . (6.5)

Then we notice that D(T) obeys the differential equation

iD(T) = LD(T) (6.6)
i ~ ~ ~iD() fi[,o~ 

67
dt

ith initial condition

D(O) - ]p-P5 (6.7)

where we have assumed that p - p P , The equation of motion (6.6) is identical

to Eq. (2.9), which is sometimes referred to as the quantum-regression
theorem.2 7 This implies that the time regression of the dipole correlation

function D(T) is identical to the time evolution of the density operator p(t).

This, in turn, is tantamount to the statement that the dynamical properties of

the system are reflected in the frequency dependence of the absorption profile,

which elucidates the s4gnificance of a measurement of I(wL).
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From Eq. (6.5) we see that we only have to solve Eq. (6.6) for the reduced

correlation function Do (), which can be done along the very same lines that led

to Eq. (3.17). Hence we can immediately write down the solution, which is

D o() exp(-i(L a-ir)o)oi,P o ]  - (6.8)

Substitution into Eq. (6.2) and performing the T integration then yields

ReTr ir[o ]  (6.9)L a

in terms of the steady-state solution Po from Eq. (3.17), which obeys

(L -ir) ° -o , Tra -1 , Pot Mp (6.10)

From conservation of trace in the time evolution of po(t), it follows that

lim D 0() o oTr a4l' fi = 0 (6.11)

which proves that the principal part in the upper integration limit T -

vanishes. Equation (6.10) is easily solved for any level configuration. Then

we insert po into Eq. (6.9), which determines the absorption profile in terms of

a matrix inversion.

VII. LINE SHAPE

Expression (6.9) represents the complete absorption profile as a function

of wL" In order to disentangle the contributions from the various adbond

resonances, we consider the situation of two levels i1> and 12> with separation

S- W w > 0, and we scan the laser over this resonance. The resulting

profile I(wL) is then termed the line shape of this particular transition. With

the expansion in matrix elements from Section V, we can write down immediately

the equation of motion as a linear set of differential equations. With p1 2 1

11P 12> and so forth for the other p i' we btain

, 
J"
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id -ia2p + (7.1)
dt 22 21P22 ia 2P11

i dt p11 = 1a2 1 P2 2 - ia 2P1 l (7.2)

i dP2 = (W-in)p21 + in exp(2i*S)Pl2  (7.3)

i ! PL2 = inexp(-2i*s)P21 - (Wo+in )P12  (7.4)

where we introduced the abbreviations for the relaxation parameters

-t- I<klsl>12Red(Ak) (7.5)

2*n = Jl<21Sl>1(C(wo) + (-Wo) ) (7.6)

and neglected the couplings due to the small diagonal matrix elements <11iS1>

and <21Sj2>. Furthermore, the phase *S of <21S11> is defined by

<21S11> = 1<2ISI1>lexp(i*S) - (7.7)

Of course, we can choose the phase between I> and 12> in such a way that S=

0, but it will turn out to be advantageous to postpone the definition of the

relative phase.

The steady-state solution of the set (7.1) - (7.4) is readily found to be

n 2 a a2 1/(a2 1 + a12 ) n iI . a12/(a2 1 + a12 ) (7.8)

for the populations =Pkk- whereas the coherences p12 and T21 vanish. From

the set (7.1) - (7.4) we read off the matrix representation

4L + ta2 1  -ia12  0 0

"ia2 1  WL + ia12  0 0

L La + ir= (7.9)

0 0 WL - wO iln -in exp(21#S )

0 0 -inexp(-2i#5 ) wL + w + in*



on the basis 12><21, 11><11, 12><11, Ii><21. The inverse of this matrix is then

substituted into Eq. (6.9). Matrix elements of the dipole-moment operator are

not necessarily real. We write

<21pl1> - I<21jpl>exp(i, ) (7.10)

and now we choose the phase of the wave function Ii> in such a way that * = OS'

Combining everything then gives for the absorption line

4wowLReq

IGwL) - I (i - o %14w0wL Re (7.11)Li1 n2 W 2 _2 ~ 2wm 2  2 2
0Im)2 + 

4wL (Req)

where the Einstein coefficient B for stimulated transitions between 11> and 12>

is defined as

B = (E A2 -1l<2l> Z> E-L12 (7.12)

Due to the fact the Ren and Imn are not necessarily small in comparison with wo o

the line is not a simple Lorentzian. A few examples of I(w L ) are drawn in Figs.

5 and 6.

VIII. SECULAR APPROXIMATION

A great simplification arises if the relaxation constants ck nn are small

in comparison with the transition frequencies Akt of the free evolution of the

adbond. In spectral terms this means that the widths and shifts of lines are

small in comparison with their central frequency, so Inl<<w ° in the notation of

the previous section. Then the Liouvillian L will dominate the time evolutiona

of P (t) in Eq. (3.17), and the coupling between eigenvectors of La with

different elgenvalues can be neglected. Every frequency A kE gives rise to a

single line, and the time regression of the correlation function does not couple

anymore between different lines. In this approximation, every line evolves in a
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secular fashion, which explains the origin of the name "secular" for this

liiting approximation.

Mathematically this implies that we can decouple the time evolution of the

coherences <kIPo(t)12>, k x 1, from the equation for the populations nk(t) =

<klpo(t)k>, since the free evolution of <kIp0(t)I > is proportional to exp(-

iakEt), whereas nk(t) evolves with eigenvalue zero (Akk = 0). From the matrix

representation of section V it then follows that the coherences decay

exponentially to zero, and that the time evolution of the populations is

governed by the master equation

d nk  (na - nkak) (8.)

where only the relaxation constants a k from Eq. (7.5) appear. Equation (8.1)

is a simple gain-loss balance for the population of level 1k>, and we can

interpret the term ntatk as the rate of transitions from It> to 1k>, due to

single-phonon emission into the crystal (w E > wk ) , or energy absorption from the

solid (w i < wkk). The set of differential equations (8.1) should be accompanied

by the constraint

nk 1 (8.2)

k

which expresses conservation of trace.

From Eq. (8.1) it follows that the decay constant for level k> can be

written as

Ak a~ k1(8.3)

which turns the master equation into
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-n . -A + n a (8.4)
dt k k k k

We notice that in the secular limit, the relaxation constants, which determine

the level populations, are real. The coherences, however, still acquire

contributions from the imaginary parts of the Ckmn' s, which amounts to the line

shifts. An advantage of the secular limit is that the imaginary parts can be

accounted for by attributing an effective level shift to each frequency wk'

according to

-,=k+ Imk£k (8.5)

Then we consider this transformation done, and suppress the tilde henceforth.

For further use, we remark that in the secular limit the relaxation operator can

be expressed entirely in projection operators. We obtain

rp akt(PkP + PPk - 2P2ETra P kP) (8.6)

Q kE

as can be checked by inspection.

Obviously, the secular approximation is not suitable for the evaluation of

the details of a line shape, since it turns every line into a Lorentzian. In

r.~ the remainder of this paper we shall consider the effect of irradiation with a

strong laser. Then the dominant features of this system will be determined by

the driving field, rather than by the minor details of the coupling to the

phonon field. Hence we can adopt the representation (8.6) for the relaxation

operator from here on.

IX. COHERENT EXCITATION

Probing the adsorbate with a weak laser does not alter the dynamics of the

system. In a different application of lasers in these configurations, one

4.
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deliberately tries to modify or affect the behavior of the system by driving a

particular transition with a strong, resonant field. The coherent nature of a

laser field (well-defined phase in its time evolution) provides essentially a

different excitation mechanism than a coupling to a thermal bath, like the

phonon reservoir. Along with the fact that the laser power can be very high,

this then opens the possibility to drive the system away from thermal

equilibrium. The presence of the radiation will tend to maintain a certain

distribution of the population over the different levels, which has to compete

with the thermal relaxation. Therefore, it can be anticipated that it should be

feasible to actually change the dynamics of the adbond if the laser is

sufficiently intense. As mentioned in the Introduction, the first goal has been

to enhance the desorption by resonant excitation of the adbond.

Radiative transitions between vibrational adsorbate states have been

28-32
studied extensively, both in the weak-field case and for strong

fields.6,33-35 In the present paper we summarize and extend our own~36-38

approach, which is valid for arbitrary laser power and includes the effect

of the laser linewidth. We shall again work with a Liouville notation, which

allows a concise formulation. Suppose that the laser frequency is in close

resonance with a single transition of the adbond only, and that it couples a

ground state lg> (not necessarily the lowest state of the adbond) with an

excited state je>, which are separated by

W0 - - Wg > 0 . (9.1)

The idea is that je> is one of the high-lying states in the potential well,

which is very unlikely to be populated by thermal excitation. Then this

configuration automatically excludes resonant coupling between other levels.

a%
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Radiative transitions only occur between le> and Is>, but the thermal coupling

remains present between all levels.

The electric component of the laser field at the position of the adbond is
'I

.,, ~'.given by

E(t) = E Re £Lexp(-i[wLt + 0(t)]} (9.2)

where *(t) is a real-valued stochastic process, which is responsible for the

broadening of the laser line around its central frequency wL. It can be shown3 9

that the response of the system is quite insensitive for the stochastic details

of O(t), provided that we restrict the description to single-mode fields. We40

shall take 0(t) as the independent-increment process, which covers the more

familiar Gaussian white-noise and random-jump processes as special cases. The

multiplicative stochastic differential equation for this diffusion process has

been solved in the Appendix of Ref. 41, where it turns out that the spectral

4- profile of the laser is a Lorentzian, whose half-width at half-maximum is

denoted by X.

The dipole coupling between the adbond and the laser field, Eq. (6.1), now

attains the explicit form

-*E(t) = -JAQle><glexp{-i[wLt + *(t)]) + Hermitian conjugate (9.3)

where the usual rotating-wave approximation42 has been made, and permanent

I , dipole-moments have been omitted. The strength of the coupling is determined by
%the Rab frequency

.",. n - 'lo <elp-c IZ> (9.4)

Then the equation of motion for ^he reduced density operator becomes

I °
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i -Po0(t) - [Ha - v'E(t),Powt)-i~rPowt (9.5)

which now contains the interaction with the external field explicitly.

A convenient way to eliminate the fast oscillations with the optical

frequency wL from the Hamiltonian is by the introduction of the stochastic

unitary transformation
4 3

o(t) - exp(-i[wLt + *(t)]L }Po(t) (9.6)

which contains the Liouvillian

L p - Pg Ip] . (9.7)
g g

It is easy to check that the transformation only affects the coherences, so that

we have

<klo(t)Ik> = nk(t) (9.8)

for every level 1k>. With some algebra, we find the transformed equation of

motion to be

a(t) - (Ld + (t)L - ir)o(t) (9.9)

with LdP = A1 [Hd,P] and

Hd H a + AWLP " i-n(je><gj + lg><el) (9.10)

the dressed-adbond Hamiltonian. This Hd has the significance of representing

the free adbond (H a), the free evolution of the single laser-mode and their

dipole coupling. Phonon transitions (r) and phase fluctuations (j(t)Lg) couple

the eigenstates of Hd which both give rise to relaxation of a(t).

V,
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The appearance of the time derivative i(t) of the stochastically

fluctuating phase turns the equation of motion for o(t) into a multiplicative

stochastic differential equation, and the density operator a(t) into a

stochastic process. Only the average over many realizations of the process 4(t)

can have relevance, and we write

U(t) - JCt) (9.11)

where the brackets ... indicate the average. Then Eq. (9.9) is easily

solved for its average, and we obtain the equation of motion for f(t)

dt
i idn(t) - (L d  i W - ir)n(t) (9.12)

where the effective relaxation operator, which accounts for the finite laser

linewidth, is given by

2
W = L . (9.13)

g

This operator can alternatively be represented as

Wp = A(P p + pPg - 2PgTraPgP) (9.14)

which is reminiscent of the structure of r, Eq. (8.6). In Eq. (9.12) we can

incorporate the effect of the laser linewidth by the substitution a . a + 2Agg gg

in the definition of r, although in general this is not the correct procedure,

as we will see in due course.

X. DRESSED STATES

Both the laser linewidth and the coupling to the phonon reservoir give rise

to a damping of the free evolution of the dressed adbond, which is represented

by the Liouvillian Ld in Eq. (9.12). This Ld is the analogue of La from Eq.

(3.17), pertaining to a field-free system. In order to illuminate the physical

-. , -. . . -. . . - -. -,. . . ., .. - : . .- ,., .<-. . .? < - "-



27

picture, we diagonalize the Hamiltonian H d . First we rewrite Eq. (9.10) as

H d  
1  AwiP i + 'A(we + Wg + wL)(Pe+Pg)

i~e,g

- (Pe - P ) - Q(le><gl + Ig><el) (10.1)

with A - WL - w° the detuning from resonance. Diagonalization of Hd is now

trivial, and we find the eigenvalue equations to be

Hd k> - %wklk> , k * e,g (10.2)

HdI±> = I4(we + Wg + W L T 0')1±> (10.3)

in terms of the generalized Rabi frequency

a, -( + 2/a2) . (10.4)

Hence the dressed states 1k> with k * e,& are equal to the adbond states 11o,

and they have the same eigenvalue, whereas the states je> and lg> form the

linear combination

1+> = Ig>sinjO + je>cosjo (10.5)

1-> - I>cosle - Ie>sinjo (10.6)

which is parametrized with the angle

e - arctan (WA&). (10.7)

The position of the dressed states with respect to the adbond states is

illustrated in Fig. 7.

XI. STEADY STATE
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Solving Eq. (9.12) for a transient regime [O,t] has little significance,

since a preparation of a specific initial state H(0) is practically not

feasible. Any state n(0), however, will relax to the same long-time solution T

on a time scale of the order of r- . Therefore, we consider in some more detail

the equation

(Ld- iw - ir)T-0 . (11.1)

Due to the presence of the driving field, the equations for the populations IT k

<kjTMjt> will not necessarily decouple anymore from the equations for the

coherences between different states. In general, all matrix elements of 1T(t)

couple, but it turns out that in the steady state the coherences for k = t

vanish, provided that (k,t) * (e,g). Taking matrix elements of Eq. (11.1) shows

that the relation between the populations only involves the coherence between

the driven transition le> - Ig>, as could be expected. Using 71 f 71 gives the

important relation between the real and imaginary parts

(Ae + A + 2X)Re<elllg> - -2tIm<ej11jg> (11.2)

which enables one to combine the equations for TI and TI asg e

a r(T - TI) Im<elTnlg> (11.3)

in terms of the parameter

a r 2 i(Ae+Ai)+2 . (11.4)ar2 2

e +Ag) + X) +A

With the aid of Eqs. (11.2) and (11.3) we can eliminate the coherence, which

finally yields the set of equations for the populations

1ta kmk% Pk *e,g (11.5)
tUak~~
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t

LI I a A 11 -+a( -T . (1.7

'IThis set can be considered as a steady-state analogue of the master equation

* (8.1).

Inspection of Eqs. (11.5) - (11.7) shows that we can write the set

alternatively as

a (11.8)

where the primed constants are defined as

"kQ 9 k,Q. e.g or g~e

at

-,.. I~astthe rate( of
t

In the same fashion as when we identified the quantity U o the rato

transitions from sk> to I> due to single-phonon processes, we can now interpret

n ar and t a as the rates of stimulated radiative transitions from je) to

and from Ig> to le>, respectively. We shall see in Section XIV that the optical

transitions acquire contributions from both single-photon and multiphoton

processes. Notice that the three optical parameters (9, A and X only enter the

equations for the populations through the combination (11.4) in a r
urthe prithe rate constant a r is linear in the laser power (-

aurthermore r, =)eg rwhich(1.9

implies that the number of radiative transitions increases indefinitely with an

increasing incident intensity. Obviously, the net absorbed power by a single

Pdear

adsorbed atom should reach a saturation value in the limit of high irradiances.

This will be shown in the next section.
m *r-
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XII. LASER HEATING

Radiative excitations of the adbond occur at a rate a r , whereas

stimulated emissions of photons in the laser field, accompanied with je> - jg>

transitions, happen ar Te number of times per unit of time. Balancing the rates

gives an effective rate of ar (11 - 11 e) for the absorption. Every transition

corresponds to an effective absorption of a laser photon, so that the power

absorption should roughly be equal to )wLar(Ig - 7e ). Since the accumulated

energy in the vibrational bond must be constant in the steady state, the

absorbed power from the laser beam equals the power flow into the crystal. This

process of laser heating of the substrate is entirely mediated by adsorbates,

because the crystal itself was assumed to be transparent.

In Section VI we evaluated the power absorption from a weak monochromatic

incident field, by applying the Golden Rule. Obviously, this approach fails for

strong, finite linewidth radiation, so that we must find another way to

calculate the power absorption. This is accomplished by considering the work

done on the dipole moment by the external field, which is formally given by
4 2

Nt t T (t)> (12.1)

Here, (t) - exp(iLt)u and the angle brackets denote the quantum expectation

value. Transformation to the Schrodinger picture gives

dpo
P(t) - Tr iE(t)']--- (12.2)

a- - dt

which only involves the reduced density operator po(t) of the adbond, rather

than the Liouvillian L in Eq. (12.1), which pertains to the entire system. With

transformation (9.6) we go to the a-representation, which yields

P(t) - odRe<ejolg> + + j(t))Im<ejajg>) (12.3)
w m

dt
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Application of the equation of motion (9.9) for o(t) results in

P(t) = - 3( e + A )Re<elolg> + m<elg> (12.4)

which elminates both the time derivative and I(t) from expression (12.3).

Equation (12.4) clearly exhibits that power absorption from an external field is

reflected in the appearance of coherences in the system.

The quantity P(t) depends stochastically on time, due to the fluctuations

in the laser phase. If we define the steady-state power absorption by

I(WL) = lim $P(t)I (12.5)

then we obtain I(wL) from Eq. (12.4) with the substitution a T . Subsequently

we use Eqs. (11.2) and (11.3), which amounts to

I L2)( L +o) )ar(Tg - I ) . (12.6)
l(waL) - AwL A + A r g ee g

For a monochromatic laser this reduces to I(wL) - AwLar(g - Te), as anticipated

in the beginning of this section. With increasing laser linewidth X, the factor

in curly brackets tends to w0 9 which reflects that for A large, the frequency wL

loses its significance. Then photons are considered to be absorbed in an le> -+

Ig> transition, which correponds to an excitation of the sytem with energy Ao"

Furthermore, we remark that the effect of the laser linewidth in Eq. (12.6)

cannot be incorporated by the simple substitution a -6 a + 2X, as was the
m' gg gg

case for the equation of motion for f(t).

With Eq. (11.6) we can cast expression (12.6) in the form

I(wL) A '{Ae 1 Etate} (12.7)

t2.

....
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where wL' is an abbreviation for the term in curly brackets in Eq. (12.6).

Representation (12.7) of the power absorption only involves phonon-relaxation

constants, and not ar anymore. From the restriction 0 < nk 1, which holds for

every population, we immediately deduce the upper limit

I(WL) A (12.8)

for the laser heating of the crystal. Although the rate constant a for
r

stimulated transitions can become arbitrarily large, the net power absorption

exhibits a saturation, where the upper limit is set by the phonon rate constants

rather than by optical parameters. This can be understood frcm the fact that an

absorbed photon can only be converted into thermal energy through a phonon

transition.

XIII. TRANSITIONS BETWEEN DRESSED STATES

In Section VIII we adopted the secular approximation for the phonon-

transition operator r with the argument that the time evolution of po(t) is

dominated by the free-evolution Liouvillian L' of the adbond. This gave rise to
a

the identification of the rate constants akt for the transitions 1k> - 10,

which occur at a rate n k(t)a k. For the strongly-driven adbond, however, the

time evolution of the system is governed by Eq. (9.12) for n(t), which contains

the free evolution of the dressed adbond Ld as the dominant part. Hence it

would seem to be more appropriate to define the secular approximation with

respect to the dressed states, rather than with respect to the field-free

states. Essentially, we should start with Eq. (2.9), include the interaction

-P-E(t) with the laser field in the Hamiltonian, transform to the a-picture, and

incorporate the phonon coupling. This procedure gives an expression for r in

the presence of a driving laser in which we can subsequently drop the non-

36secular terms with respect to dressed states. In a previous paper we executed
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this laborous scheme, and it turned out that the results are (almost) identical

to the simplified derivation which we now give here.

In order to achieve an expression for r with respect to dressed states, we

merely have to express the projectors Pe and P in Eq. (8.6) in dressed-states

basis functions J+> and I->. From Eqs. (10.5) and (10.6) we readily find

Pe g-P + + g + g0 (I+><- I + I-><+I) (13.1)

Pg a ++ + gt. + g + I-><+I) (13.2)

where we have introduced the abbreviations

g- cos2 O , g+ = sin 2 e , go = cosiOsinio , (13.3)

and the projectors Pt I±><±I onto the dressed states. Next we substitute the

expansions (13.1) and (13.2) into Eq. (8.6), and drop the non-secular terms.

Care should be exercised, however, because a J+> J I+> transition between two

doublets (Fig.7) is in exact resonance with a 1-> 1 I-> transition, and

therefore couplings between these transitions should be retained. Combining

everything then results in

rp = j ak (P P + PPk " 2fTrf'kP)

kE.

+ go(a - a + a - a )(P+p? + Pp+) (13.4)
0 eg ee ge gg + - +

; 2
where the term proportional to go comes from the mentioned degeneracy, and Pk

denotes a projector onto a dressed state. Representation (13.4) gives rise to a

master equation with respect to dressed states, which implies that we can

interpret the parameters akt as the rate constants for transitions between

dressed states.

%

S.

,oK:~ .*VK ~ ~ ~ >
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Of course, the parameters ikE can be related to the relaxation constants

Swith respect to the adbond states. For k 9 e,g and t * e,g, we obviously

have akt = ak W If one of the states lk>, It> equals a 1+> or 1-> state, we

find

ak± " g~k + g~kg (13.5)

a+ gaa (13.6)

Ak= g a ek + gtagk (13.6)

in terms of the optical parameters g,. Transitions between the j+> and 1->

states are governed by the rate constants

2 2 2
a + g age + g aeg + go(aee + a 9) (13.7)

. '- 2 2 2
± go(age +aeg g aee +ga (13.8)o g egfi ±gg

Interaction with the phonon field is now regarded as the occurrence of single-

4 phonon transitions between dressed states. Relaxation constants which connect

an adbond state 1k> * je> or Ig> with a dressed state 1+> or 1-> acquire a

-* contribution from two distinct processes, due to the fact that jk> couples with

both the doublets in Fig. 7. In order to find out which term corresponds to

which transition, we recall the definition (7.5) of the parameter akt* We

notice that the reservoir correlation function C is evaluated at Akt' which

equals the frequency of the phonon for that particular transition. Therefore,

the terms with aek and ake represent transitions from and to the upper doublet,

* respectively, whereas the terms with akg describe single-phonon transitions
between jk> and the lower states. In a similar way we can interpret the various

terms in Eqs. (13.7) and (13.8). In Fig. 8 the different processes are

indicated by arrows, and the accompanying optical factor specifies the term in

Eqs. (13.5) - (13.8).
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XIV. PHOTON-PHONON CONVERSION

Stimulated radiative transitions between adbond states are incorporated in

the diagonalization of Ha - p-E, and therefore only single-phonon transitions

Is persist in a pictorial representation of the various processes with respect to

the dressed states. In order to elucidate the mechanism of photon absorption,

and to establish the relation with the process of laser heating, we consider the

limit of (relatively) low laser power. To this end, we first note that g± can

be expressed in 0 and a according to

g=1 (1+ 02 / (14.1)

A.,2 2
which depends only on the optical parameters through the combination /A. For

weak fields we then obtain

2 2 2 2g_ -1 -2/462, g+ -2/4A2 (14.2)

which shows that g_ remains present without a radiation field. Rate constants

which are proportional to g_ must consequently correspond to radiationless

transitions. On the other hand, the factor g+ is proportional to the laser

pewer, which implies that every factor g+ in aakE corresponds to the absorption

or emission of a photon. In this fashion we can track down the significance of

*the optical factors in the relaxation constants with respect to dressed states.

In Fig. 9 we draw the diagrams with respect to the adbond states, and they are

in the same order as the corresponding diagrams of Fig. 8. All transitions with

a rate constant proportional to g are single-photon processes.

Now it should be obvious how the process of laser heating of the crystal

J. can be conceived as a result of many photon-phonon conversion reactions. Every

phonon in the diagram corresponds to an energy exchange between the adbond and

the crystal, whereas a photon transition amounts to an energy transfer between

.,

4
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4. the laser field and the adbond. A combined photon-phonon diagram, therefore,

represent effectively an exchange of energy between the laser and the crystal, a

process which is mediated by the adsorbate. Summation of the contributions from

aall diagrams, weighted with the probabilities for the diagrams to occur, then

gives the net power absorption by the crystal.

XV. SUMMARY

We have studied theoretically the optical properties of an adsorbed atom,

in a vibrational bond, on a crystal. Coupling of the adbond states with the

phonon field of the substrate have been assumed to be brought about by single-

phonon transitions only, which is the main approximation in the presented

theory. It is straightforward, however, to include higher-order processes,

especially when the interaction is taken to be a Morse potential. Then all

matrix elements can be evaluated analytically, and a system with an arbitrary

number of adbond states can be parametrized with the depth, width and position

of the binding potential. We have chosen to restrict the approach to single-

phonon transitions, which allows a clear interpretation of the coupling

mechanism. Then we can incorporate the interaction with the crystal with a

single phonon-field amplitude correlation function G(T), which was studied in

detail in Section IV. It is the behavior of this crystal-response function that

determines whether the reservoir approach to thermal relaxation can be justified

or not. In particular, the decay of G(T) must be sufficiently fast, in

comparison with the adbond relaxation rates, in order to impose a Markovian time

aevolution on the reduced adbond density-operator. This decay time is typically

of the order of the inverse Debye frequency, which is reasonably small in

comparison with the rate constants for a single-phonon process (- one order of

magnitude).

4"-I.
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Subsequently, the absorption line shape has been evaluated, showing

considerable deviation from a Lorentzian in certain cases. The origin of the

distortions and the shifts, other than the common Lamb shift, has been tracked

dcwn to the presence of non-secular terms in the time evolution of the density

operator, which in turn appears as a consequence of the fact that the damping

constants are not necessarily small in comparison with the transition

frequencies.

Next, we have considered the irradiation of the adsorbate by an intense

non-monochromatic laser. The laser linewidth is assumed to arise from a

stochastically-fluctuating diffusive phase of the driving field. Diagonialization

of the Hamiltonian is accomplished by a stochastic transformation, which yields

the dressed states. These states can be interpreted as the joint eigenstates of

the adbond, the single-mode laser and their interaction. We have analyzed the

equation of motion for this sytem and discussed some properties of the steady

state. In particular, the coherence of the driven transition does not disappear

in the long-time limit, which indicates that the system is not in thermal

equilibrium.

Then the power absorption has been obtained from the work done on the

dipole by the external field. The finite bandwidth of the laser gives rise to

an effective photon energy )AwL, with ' in between wo and wL" Then the power

absorption can be written as I(wL ) ' )S.a(1g-fe), with a the rate of optical
L ' Lr g e r

transitions. It has been shown that a is linear in the laser intensity, which

implies that 1g -I tends to zero in the high-intensity limit, since theg e

absorption rate must remain finite. Stimulated transi ions, which occur at a

rate a r, Eq. (11.4), are reduced by an increasing linewidth, if the system is

driven close to resonance (A - 0), whereas far off resonance the linewidth

enhances the number of transitions (a -A). This feature is easily understood:
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in the case 6 - 0 most laser photons are farther off resonance than for

mcnochromatic incident radiation. On the other hand, for a large detuning there

is still a considerable amount of photons in close resonance, which have a large

4 probability to be absorbed.

As a last issue, we have derived the rate constants for single-phonon

transitions between dressed states. In the low-intensity limit, these processes

can be interpreted as single-phonon/multiphoton processes in adbond-state

diagrams, where "multi" stands for zero, one or two. This reveals that

photoabsorption is inevitably accompanied by a downward phonon transition, which

. gives rise to heating of the crystal. Light-induced desorption through resonant

excitation of a high-lying state is consequently bound to have an extremely low

efficiency.
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FIGURE CAPTIONS

Pin. 1. Real (a) and imaginary (b) parts of the correlation function G(T)sp

divided by IwD , and as a function of wDT. From Eq. (4.11) it follows that the

integral over curve (a) equals zero.

Fig. 2. Stimulated part of the reservoir correlation function, divided by

-2
2rw2kT/', and as a function of wD. Curve (a) corresponds to YD - O00lkT

(high-temperature limit), and for curve (b) we have taken AwD - 4kT (low-

temperature region).

Fig. 3. Real (a) and imaginary (b) parts of the Fourier-Laplace transform of

-2
the spontaneous part of the correlation function, divided by CwD , and as a

function of w/wD . The real part vanishes for w < 0 and for w>wD , whereas an

imaginary part is present for every w.

Fig. 4. Same as Fig. 3, but now for the stimulated part. Normalized by CkT/A 3

and for AD = 3kT. The real part only vanishes for IwI>wD. Singularities in

the imaginary part appear at w = ± wD, which is an artefact of the sharp cut-off

of the dispersion relation at wD . Any smooth decay for w > wD, but still

arbitrarily steep, will result in a finite value of the correlation function at

W ± 
D •

FIR. 5. Absorption line as a function of wL, and divided by ILB( n1 - W

Frequencies are in units of w 0 . The parameters for these curves are Imn - 0 and

Rej - 0.5,1,2 for a,b,c, respectively. For a decreasing Ren (- linewidth), the

profile tends to a Lorentzian with half-width at half-maximum equal to Ren. For

I.m-- 0 the maximum is always situated at L a Wo.

Fig. 6. Same as Fig. 5 but now with Ren - 0.2 for all three curves. The

imaginary parts of n, the lamb shift, are +0.3, -0.5 and -0.6 for a, b and c

respectively. For Imn small, the line around wL = w only shifts over a

distance Imn, but for larger values the line shape changes dramatically. The

*0
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top of the curve is always at wL = Wo(I1+2Imn/wo1) , which is independent of

Re-. For Im small in comparison with w the top appears to wL Z w° + Im.

Fig. 7. Diagonalization of the dressed-adbond Hamiltonian. The diagram on the

left-hand side represent product states of the adbond te>,Ig>,Ik>,... and the

free evolving laser In>, with n - 0,1,2... the number of photons in the mode.

States In> and In+l> are separated by the photon frequency wL . In this diagram

we have taken a = wL - w > 0. Since the laser is assumed to be almost on

resonance, we have a ladder of doublets separated by the detuning A. Then the

dipole interaction couples the states which form a doublet, but it does not

couple two sets of states. A diagonalization in turn gives rise to the diagram

on the right-hand side, where the separation in the new doublets equals 0l',

which is always larger than a.

Fig. 8. Single-phonon excitations of the laser-adbond system. The diagrams

with the arrows in the opposite direction (not shown here) correspond to phonon

emission into the crystal. The three diagrams with the double arrows persist in

the absence of the laser and correspond to radiationless transitions between

adbond states. Solid arrows have rate constants proportional to g+, so that

they represent single-photon processes. For strong fields the g transition

appears, which couples the two doublets by a two-photon process. The right-most

diagrams give transitions in a single doublet via a single-photon process.

Their rate costants are proportional to the diagonal matrix elements of the

derivative of the binding potential, which are small. For zero temperature

these transitions vanish identically, since then we have a - a a 0.ee gg

Fig. 9. Low-intensity interpretation of the diagrams from Fig. 8. With respect

to the adbond states, a single-phonon process goes together with photon

absorptions and emissions in such a way that the resulting diagram is energy

conserving. The sequence of processes in a single diagram can only give rise to

V - " V .'> " "' " """ "V
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transitions between the real states je>.Ig>,k>,... but intermediate states can

be virtual in this picture. The diagrams are in the same order as in Fig. 8,
and for the phonon-emission processes we simply reverse the directions of all

arrows.
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